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Abstract—New bounds are obtained for stresses in pressure vessels subject to primary or secondary creep
and including the effect of elastic strains. These results are applied to the estimation of the times of
initiation of rupture using the Kachanov theory of brittle damage.

NOTATION
inner radius
outer radius
Young's modulus
constant 2 or 3 for a cylinder or sphere, respectively
creep constant
n exponent in the Power Law
p(t) pressure

P(t) related to pressure by P(¢)= (%) 36-12. p(t)

r radius

R mon

i
R constant = (%)

s; stress deviator
t time
€; strain tensor
u constant = EK for secondary creep
v damage constant (Kachanov)
g, stress tensor
Oma Maximum principal stress
o, radial stress
g, circumferential stress
o effective stress
a9} stress causing creep rupture in 10° hr

1. INTRODUCTION
In[1], the boundary value problems for primary creep in either cylindrical or spherical pressure
vessels subject to a non-decreasing internal pressure were reduced to the following integral
equation

olr, 1) = ’:f‘)+ u (g,r f ’ [ fo "o"E ) df]m'"”—f— [ J; "o ) d‘r]mmm). (L.1)

Here, the unknown function o(r, t) is the so-called *‘effective stress” at radial or axial distance r
from the center of the vessel and time £. P(?) is related to internal pressure by

P(1)= (%) 36-012. p(p), (1.2)

1This research was supported by the National Science Foundation under Grant MPS-75-07450. This work was

submitted by the first author as a partial fulfiliment of the requirements for the Ph.D. degree at the Illinois Institute of
Technology.
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a and b are the internal and external radii of the vessel, and
b
- d
B sza §iflv (13)

where j = 2 for cylinders, j = 3 for spheres. When m# 0 we have the case of primary creep.
It was also shown in[1] that o(r, t) satisfies the inequalities

é%glsa(r,t)$é%(-t—)(aSrsb,t>0). (1.4)

It was suggested in[1] that the above bounds might, themselves, be used as the basis for more
refined bounds. This paper presents a first attempt at this. Such bounds can be of great practical
importance to the designer, giving a quick check on preliminary designs, thus saving the cost of
expensive computer solutions. Even if more accurate computer solutions are necessary, the
bounds can be used as a check on these solutions.

In Section 2 a set of bounds is derived that reduce to the exact solution for ¢ = 0. They are
shown to vary from the initial elastic solution as #™*" and thus for “‘short™ times are superior
to the bounds given by (1.4). In Section 3, we consider only the case of secondary creep, and
derive bounds which for large time converge to a limiting stress, a(r, ), as given in[2] as

o(r,®) = % P(o)[a™#" — p=#n] " prilm, (1.5)

In Section 4 we use the results of Sections 2 and 3 to make predictions concerning brittle
creep rupture in the sense of Kachanov[3]. We present a criterion for determining when failure
will be initiated at a place other than the outer surface of the vessel. Also assuming failure is
initiated at the outer surface, we obtain upper and lower bounds on the time at which failure
starts.

The estimates derived in this paper are applied to real metals, using physical constants
tabulated by Odqvist in[4].

2. SHORT TIMEBEHAVIOR OF EFFECTIVE STRESS

Using the previously derived bounds (1.4) we are able to derive the improved bounds given
by

Theorem 2.1. For a symmetric pressure vessel undergoing primary creep with non-decreasing
internal pressure proportional to P(t),

o(r, 1) —Q;}'—)' <m(r, ), @.1)
where m(’,’ t) = 5 (Bn L‘ Pu(,r) df)ll(m+l)(ai("("/("'+'l))- bi(l—(nl[md-l]))). (2_2)
PfOOf? Define ¢(r, I) - jo‘ 0"(’, ‘T) dr. (23)

Equation (1.1) may thus be written

b
ol(r, t) = %_(_Q+ M (g L ¢l/(m+l)(§, ,)9_5_ ¢”‘"'+"(r, t)) (2.4)
In[1] it was shown that

= (P ) <0, (1>0) @s)



On refined creep bounds and brittle damage estimates for pressure vessels 43

Applying egn (2.5) to eqn (2.4) and using (1.3) we get

olr 1)< 5—}:}9 + f,: [ai¢ "™+ (a, t) - big "™ *1(b, )], (2.6)
and
o(r, )= ﬂ:fﬁ -5 [ai¢'™*D(a, t) - big"m*V(p, 1)]. 2.7)

Putting eqn (1.4) into eqn (2.4) gives

s ns (& [ prnar) ", @8)
and
¢l/(m+l)(b, t);(%:. fo' P*(7) d'r)mm“). 29)

Substituting eqns (2.8) and (2.9) into (2.6) yields

P(t ¢ Wem+1) 1 1
a(rt)< { )+%(B"L P"(T)d“') (aiw(mu-f)‘bt(n/(mm»l))-
Similarly from eqns (2.7) to (2.9) we get
olr, 1)2%“—)—’,%‘(/3" jo ' P*(7) d.,)mm”)(am—(n/(mﬂm_ piti-taitm+1Dy)

and the theorem is proved.
For the case when P(t) = P, a constant, eqns (2.1) and (2.2) can be written:

,a(r, t)—%el = m(r)tifm+n, 2.10)
m(r) = 5 (BP)Mm+D(gli-(tm+11) _ pi(1~(wllm+1D)) (2.11)

Thus we see that, for the case of constant pressure, the bounds on o(r, t) are a variation from
the initial elastic response,

otr,0)= 50, @.12)

with the m + 1 root of ¢.
It is of interest to note the values of ¢ for which these bounds are superior to those given by
eqn (1.4). Consider the case of constant pressure and let r = b, Equation (2.10) gives

o(b, t) S%?-+p(BP)'I("”)(b-Ia’"-('”'”"”— b""""“"’)t"“"*". (213)
Equation (2.13) is a better upper bound on o(r, 1) for all times less than ¢*, where t* satisfies

%};_ = %%""‘ #(ﬂp)nl(m»l)(b-ial(l-(nllmﬂl»_ b'i'll(m-ﬂ))ttl/(ﬂl*‘l). (2.14)
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Solving for t* and using (1.3) and

R= (g)' 2.15)

we have

1 (1-R)"

* — .
t (jp)n—m-l#mﬂ(R__Rnl(mﬂ))mﬂ- (2]6)

Consider a hollow incompressible cylinder of 12% Cr steel at 850°F. Hult in[5] asserts that
K=05x10%,n=175, m=18 and E = 16,200 Kg/mm?. The values of ¢* for various values of
P and (b/a) have been tabulated in Table 1.

Table 1. Time when short time bounds equal constant bounds

) ]
a
1.3 1.5 1.7 2.0
Pressure
Kg/mm2
5 108 1238 6200 34,237
1
10 4,14 48 239 1317

For the case of secondary creep we consider eqn (1.1) with m = 0:

a(rt)= ﬁ—’:,-(2+p, (g Lb J: o™(& 1) d'rgf—L’ o"(r, 1) d'r). 217

The following Corollary is immediate.

Corollary 2.1. For a symmetric pressure vessel undergoing secondary creep with non-
decreasing internal pressure proportional to P(t)

|a(r, 0 —ﬁ’#' <m(r, 1), 2.18)
where
m(r, £) = Eg— f " P(r) dr(@ii - bit-m), (2.19)
[1]

Note that at ¢ =0 the bounds (2.18) reduce to the exact solution. In this sense-they
significantly improve on the previously obtained bounds (1.4). In the case where the pressure,
P, is a constant function of ¢, for ¢ >0, the bounds on o(7, 1) take the form

Ia(r, - E:;—' sm(nt, (2.20)
where

m(r) = f;",, B P"(a’'~" — pia-n)y

=“<£)ipnjn :T_:I%); 2.21)
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Thus in the case of constant pressure, these bounds evolve away from the initial elastic
response (2.12) linearly in time.

In order to understand how they relate to the previous bounds (1.4), we consider the case
P =constant (t >0) and r = b. In this case, eqn (2.20) becomes

%’,3- m(b)t <a(b, 1) s% +m(b)t. 222)

Clearly the lower bound for o'(b, t) furnished by (1.4) is superior to that given above, but (2.22)
does give a superior upper bound for all time ¢ up to a time ¢* given by

BE - BE + mibyr 2.23)

Solving for t* and using (2.21) gives
(= bl [%—%][(pp)"-'(a-“-'" — b-Mi, (2.24)

Using eqns (1.3) and (2.15) we have
= O.P),ff,;g): e 2.25)

Since . is proportional to the creep constant K, (2.25) shows that the smaller K is, the
larger the value of t*. This relationship is reasonable, since the smaller the value of K, the less
is the creep effect for fixed n, so that the stress redistribution is slower.

Since the function

is decreasing on 0<R <1 and n =2, smaller values of R also give larger values of ¢*. Again
this is plausible since, in a thicker vessel, it should take a longer time for the redistribution of
stresses to percolate from the loaded inner surface to the unloaded outer surface.

The values of ¢* for various metals are given in Table 2.

Table 2. Comparison of bounds for secondary creept
P e e e —— o — .

Material Temp. (°C) »=EK n t* (hr.)
Carbon steel -
(cast) 455 9.695x10"8 5 1,762
C?rbon s1):ee1 450 1.07 x 1077 5 1,577
1lled )
rotte 500 2.72 x 107 3.3 413
Low alloy 450 2.97 x 10710 6 49,072
steel -
°¢ 500 1.73 x 1078 5.4 3,667
550 5.4 X 10'6 4.15 253
Chx(‘omium a;teel 450 4.602 x 10712 6.3 151,937
b4 ed =
ore 500 1.19 x 1078 5.27 7,321
550 9.3 x 1077 A 793
Nigonic 75 650 8.874 x 1076 2.73 5,392
orge

¥Data is given for a cylindrical pressure vessel with (b/a) =2 and P = § kg/mm?.
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3. LONG TIME BOUNDS FOR SECONDARY CREEP

It was shown in[2] that the effective stress in a symmetric pressure vessel undergoing
secondary creep approaches a limit o(r, ©) uniformly in r which is given by

o(r.®) =lima(r, 1) = # P(@)a™" = pin)pin, (3.

Clearly, a natural way to estimate the long time behavior of o(r,t) would be to bound the
difference between o(r, t) and o(r, ®); that is, we would like to find a function f(r, ¢) such that

l,i_gf(” t)=0,r€[a,b]
uniformly in r, and
lo(r, t) — o(r,®)| < f(r, 1), r €[a, b], (3.2
where eqn (3.2) either holds for all ¢ or at least for ¢t > T where T is a known constant. It would

also be of interest to note how this bound compares with our previous bounds.
To this end, we define the inner product

b
(ww=8 [ v(g)w(f)f,-% (3.3)

with the corresponding norm

b
T Y

and the linear functional /(v) by

b
tv)=B f (6) g (3.4)

Notice that for any integrable functions v and w, and any constant C,
l(w)=(v,1), ww)=(v,w), (O)=C, (C,v~I(v))=0. (3.5)

Our main result for large times, which, for the sake of simplicity only, is restricted to the
case of constant pressure is given by

Theorem 3.1. Let o{r, t) be the effective stress history corresponding to a pressure p which is
constant for t >0, Then for all t>0,

lo(r, £) = a(r,®)| < a(r, 0K, + Kpt) e~ (3.6)
where

o] : e (GA)")
K= R (KR e 0o () )

k=t (B G

o (ER) = (5F)

A=(n-12R* - n*R™'+22n - DR" -~ n’R +(n ~ 1)?,

- )
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Proof. Setting m =0 in (1.1), we obtain the following equation for secondary creep:

a(r,t) =%P+p, (g’f: fol o"(¢ f)d‘rgf-fol a(r,7) d'r). 3.7

Differentiated with respect to time this becomes

atrn=u (8 f "o 0%-w0,0). (38)
Define w(r, t)= Po™(r, t). 3.9

Then multiplication of eqn (3.8) by rinc"~'(r, t) yields

b
90r,6)= w08 [ 6.0 - wir ). (3.10
In the notation of (3.5) this takes the form
w = uno"'(I(w) - w). @3.11)
Due to (3.1), w., the limit of w(r, f) as t -+, has the form

We = lim rig"

pa
= (L pe) ta - by,
i.e. w. is a constant function of r. Therefore, by (3.5),
(We) = W (3.12)
It is convenient in the derivation of (3.6) to first bound the quantity
v(r,)=w(r,t)— w,. (3.13)
For this purpose, we use (3.12) to rewrite (3.11) in the form

v = uno""'(I(v) - v), (3.14)
from which it follows that

o+ uno" v = uno""'(v). (3.15)

If we treat (3.15) as a first order, linear, ordinary differential equation in v, we may solve
easily by multiplying both sides by the integrating factor

exp[ Io ‘ uno""(r, 1) d-r],
and integrating to obtain
v(t) exp [y.n L‘ o"! dr]= v(O)+I°' wna""'(v) exp [p,n L' o"! d)«] dr

=00+ [ 101 & (exp [un [ -t aa]) . (3.16)
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Integrating by parts now on the right-hand side of (3.16) and dividing both sides of the resulting
equation by the exponential factor, we get

v(t) = (2(0) — lv(0)) exp [ - un fol o dr] + [v(t)

”jol filr) exp [ K f o dA] dr. (3.17)

This equation shows that a bound for |v(f)] will follow provided we bound |/v| and |/z].
However, since (3.13) implies that

o(r,®) =0,

it follows that
lo(t) = lo(t) - lv(x) = —r lo(r)dr. (3.18)
!
Equations (3.17) and (3.18) and the inequality (1.4) imply that

lo(1)] <]v(0) - lv(0)je™" + j - |l5(7)|dr

¥ f |5(r)je~C¢~" dr (3.19
0

where C is as defined in the statement of Theorem 3.1. Thus the problem is reduced to that of
bounding |/3].

For this purpose we apply the operator ! to both sides of (3.14) and use (3.5) plus Schwarz’s
inequality to see that

1o = un(c"", lv~v),

£

we=lio = . (3.20)

|l5] < nlloe™ it - vfj <

It remains to bound [|/v — v||. Following a line of reasoning originated by Einarsson[6, 7], we use
(3.5) and (3.14) to make the computation

9 = oy =S v by —
dt(”lv v||)—dt(1v v, lv —v)

=2(l0 — 9, lv—v)
==20,lv-1v)
= =2un(c"™!, [lv - vP),

so that
ad—t(ﬂlv - o))< ‘2un(:’£xib!} o" iy - of?
=-2C|l - vl

This inequality can be integrated to obtain

v = vfi(t) <|llv - vf[(0) e~ (3.21)
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If the bound on |/5| which is implied by (3.20) and (3.21) is substituted into the right-hand
side of (3.19) the result is

[o()] < [1o(0) - lo(0)] + R~ Iy ~ vll(0)(1 + C] =, (3.22)

In order to derive from (3.22) an estimate for |o(r, {) — a(r, )|, we use the elementary fact
that if

0<xo<min{x;, x;}, n=1,

then

[xy— x| < nx:"" fx" = x;7, (3.23)

Since, by (1.4)
0< %};- < min {o(r, 1), o(r, )},
we can use (3.9), (3.13), (3.22) and (3.23) to get
|o(r, ) ~ o(r, )| $;,E_C [2(0) ~ lv(0)| + R™™*'|lv - Ibf}(OX1 + C)] ™", (3.24)

This inequality is essentially (3.6). All that remains is the straightforward but laborious
computation of

o GPYal [ A \P
o ”"(0)"n(1-k)"”(2n—1) ;

where A =(n—1PR* - n*R*~'+2(2n - 1)R" —n*R +(n - 1), and

o o
[0~ o) = w1 - R~ (2) - Ry

i j
sn—(-(i'—}:-—)%),—q(R"—nR+n—l).

This completes the proof.
From (3.6) we get the following exponential bounds on o (r, t):

o(r,t)so(r, o)+ a(r,0XK, + Kst) e, (3.25a)
a(r,t)=a(r,©)—o(r,0(K, + Kyt) e . (3.25b)

Since, for P >0 and a < b, it follows from (3.1) that
P
2 cotum <, =

there must exist a time ¢* such that for ¢ > t* the bounds (3.25) will give a better estimate of
o(r,t) than (1.4).

Consider the effective stress at the outer surface of the pressure vessel. At r = b, (3.25a)
becomes

o(b,t)<g(b,©)+a(b,0XK,+ Kjt) e,
To find t* we must solve the transcendental equation

ola, 0)= aofb, w)+ G’(b, OXK,; + Kst) C—C'.

SS Vol. 16, No. 1-D
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Table 3. Comparison of long time bounds and constant bounds

Times t"

Temp. b B
Material (°C n M = KE g= 1.1 a-1>5 =20
Low slloy 450 6 2.97 x 10'30 . 249 8,090 1.1x10°
s -
(rolled) 500 5.4 1.73 x 107 .056 646 52,431
550 4.15 5.4 x 10 .032 47 1,319
600 2,76 5.94 x 1072 0 9 90
650 2.1 7.722x10°> (-.782) (-2.1) 5.4
Chroniun 450 6.3 4,602 x 1071 . 439 24,104 4. 3% 10°
{forged) 500 5.27 1.19 x 10:7 142 977 94,563
550 44 9.3 x 10 .079 149 5,115
600 3.8 4.3 x 1077 .015 14 289
Nimenic T3 650 2.73 8.87x 1070 (-4.18) 619 6,084
A _
gninum alloy 199 5.3 2.0636 x 1078 0 698 51,930
Alg“‘Ré'g‘“m alloy 599 3.7 3.0351 X 1070 .309 249 4,765

The data has been tabulated for a cylindrical pressure vessel with an internal pressure of 10 kg/mm?. This
involves the approximating assumption of incompressibility.

The values of t* for various metals have been tabulated in Table 3.

From the table we see that the exponential bounds are superior when the vessel is thin and
the creep constant, K, is large. This is plausible since the exponential bounds estimate the
difference between o(r, t) and the redistributed state g(r, ). For a thinner vessel with large K
the stress should redistribute faster, so that o(r, t) will approach its steady state value faster.

Note that in some cases, especially for metals at very high temperatures, the exponential
bound is a better bound for all time. In fact, for a low alloy steel at 650°C, even when the ratio
of b to a is 2.0, the exponential bound is superior for all but the first 5.4 hr.

4. DAMAGE ESTIMATES FOR SECONDARY CREEP

Kachanov in[3] describes a theory of brittle creep rupture involving the use of a function
y(x, t) which he calls the “continuity” function. This function indicates the deterioration of the
material at a given point x in the body at time t. When t =0, ¢ = 1. As t increases, the value of
¢ decreases until at time ¢ = tg, P(x, tz) = 0 and the material at x is no longer able to carry a
load. At such points, a failure front develops which moves through the material until the total
carrying capacity of the structure is exhausted and collapse occurs.

Kachanov assumes that  is related to the maximum principal stress, dma, through the
differential equation

where C and v are material constants. Multiplication of (4.1) by ¢* and integration from 0 to ¢
gives

t
11—y =C(1+v) f O hax d7. 4.2)
0
At the time of rupture, tg, we note that y(tg) =0 so that
R
1=C(+ V)L O hnax dT.

Tabulated data is usually not presented in the form of v and C. What is given is a3, the
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constant stress which produces creep rupture in 10° hr in a uniaxial creep rupture test. Thus,

1=C(+v)oP10° 4.3)

and
R
[e&3]"10° =f O hax d7. (4.4)
0

Also if gy is the constant stress needed for creep rupture in time f,, we have

Cl+v)a'ti=1. 4.5)
Therefore,
Oy v
(;(3;) = 10°. (4.6)

By finding f, for various values of ox and making a log-log plot, the value of v can be
determined. Kachanov in[3] has found that for numerous structural steels, » =~ 0.7n, and that, in
general, » <n where n is the power in the Norton Power Law.

In his paper(3), Kachanov considers creep rupture of a thick-walled cylindrical tube
assuming a stationary stress distribution corresponding to a state of plane secondary creep. The
radial and tangential stress components are, respectively,

o=s[1- (%)w"], 47

oo =s [1 +2__';£ (%)(Zln)]’ (48)

s=p ([%]am— 1)_1. 4.9)

Since all shear stresses are zero, oy is the maximum principal stress and, for n >2, g, reaches
its maximum at r = b, the outer surface.

However, as pointed out by Odqvist and Erikson[8], this need not be true if the constitutive
law for the material includes both elastic and creep strains. In this case, the initial stress
distribution is elastic, and, in the elastic problem, the maximum value of o, occurs on the inner
surface, r = a (see 4.22 below). As ¢ increases, the creep effect causes a redistribution of stress
to the outer surface. However, if the material is extremely brittle or the vessel is very thick, a
zone of damage may develop before the redistribution is complete. In this case, the locus of
initial damage may be at the inner surface or somewhere in the interior.

It is our purpose in this section to apply the above developed bounds to such questions as
whether or not damage first occurs on the outer surface and the estimation of the time when
damage first occurs in the body.

First consider the case of an incompressible cylinder. In this case, the effective stress is
given by

o= -\? (06 — o). (4.10)

Using this along with the quasi-static stress equation of motion

.aﬁ.’..___a”-—a’ =0

ar ; , “4.11)

the boundary conditions
ola,t)=-p, o.b,t)=0, 4.12)
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and the compatibility condition

f:‘—’—(—}'—)dr=<\—g§)psP 4.13)
we obtain
a,(r,r)=;f§£a(§,t)9§-p=—72§fo(§,t)9§, (4.1
oar, 1) =72§ (0(r, r)—f o, r)gg-). (4.15)
From (1.5) with j =2, and (1.2) we have
ot = lim o, )= (X2) p (a2 - b2y (4.16)

Substituting from (4.16) into eqns (4.14) and (4.15) and integrating we find that they immediately
reduce to (4.7) and (4.8). Thus the equations used by Kachanov are those for which the stress
has completed redistribution.

The equations for an internally loaded hollow sphere corresponding to (4.14) and (4.15) are

ool 1) = ay(r, 1) = (1, 1) =2 f Cate, z)%ﬁ, 4.17)
a,(r,t)=2L' 0'(§,t)-d§—§—p. (4.18)
Returning to the cylinder, we have at t = 0 the initial elastic response {2.12 with j =2)
a(r,0)=%};-=%(-\—éép). (4.19)
Substituting this into eqns (4.14) and (4.15), we get
o (r,0)=p (% (a?-r?- 1), (4.20)
au(r,0) =2 (24 b7 @21

Figure 1 shows initial and steady state values of gs.

) %

pna +(2-nb"

o?-oF)

Fig. 1. Initial and steady state values of 0.
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In order to make some failure predictions, we shall use our bounds on effective stress to
obtain bounds on the maximum principal stress. We will consider an incompressible cylindrical
pressure vessel undergoing secondary creep subject to a constant internal pressure p.

It follows from (4.13) and (4.15) that the maximum principal stress at r = a is

O, 1)= (0, 1) = (010, 1)~ P). 422)

The short time lower bound at r = a is given by eqns (2.20), (2.21) as

ota,0>E - m@ay, @.23)
where m(a) = EEF" (gat-m _ pi-m) 424)
Thus, by defining gmax(a, t) as
Gan(a, 1) =75 (Er - miax - P), @“29)
we have
Tmax((3, 1) = Imax(a, 1), (4.26)

provided failure has not occurred anywhere in the body prior to time t. This stipulation must be
made because the field equations from which our bounds were derived do not hold in damaged
subregions.

Let T, be the solution of the equation

T‘
3r10°= [ ghala, ) dr 4.27)
[+]
if it exists. Then, by (4.4),

ty T,
f Tax(a, 7)d7 = j Imax(a, 7) d7, (4.28)
0 0

where 1, is the time at which failure occurs at the inner surface. From physical considerations
Tmax IS always positive. If we assume that we are only dealing with times at which g, is
positive, and that failure has not been initiated at a point other than the inner surface, it is
apparent from eqns (4.26) and (4.28) that

t,<T..
The number T, can be interpreted in the following way: If the first point of failure in the
entire body is at the inner surface, it will occur before time T,. If failure is initiated elsewhere,

T, is nevertheless, an upper bound for the starting time of failure for the entire body.
To find T, explicitly we integrate eqn (4.27) using (4.25) to get

n=sate P (- )" -0+ Dm@@ne ['\?v‘c’ DWM)}. 4.29)

Using the definitions

rR=(%)’ 4.30)
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A=pu(v+ D0 [}/2—30?&], 4.31)
k=n—-v-1, (4.32)
and (4.24), we may rewrite (4.29) in the form

_ 1 1-R n—1 _ ,+1_2"/\Pk(l"Rn_]))l/(””
L g () (#R-(asRm-BREEENT) as

The condition that gn.x(a, t) be positive can, from eqn (4.25), be stated as

%?;-m(a)r., ~P >0, (4.34)
or
B-»p
T, < mia) 4.35)

Using (4.24) and (4.30) this condition becomes

_ (1+R)(1-R)"!
‘#znpn—l(l __Rn-—l)'

T, (4.36)

Substituting (4.33) into (4.36) and simplifying, we find that the integrand in (4.27) is positive
provided

(1+R)"*1-RY¥-A2"P*(1-R" 1 =0. 4.37)

Now let us consider the outer surface of the vessel. From eqn (4.15) with r = b we have
2
Umax(b, t) = Uﬂ(b) t)zvgo'(bs t) (4~38)

The short time lower bound at r = b is given by (2.22) as

otb, ) <E5 + m(bt 4.39)
Thus, if we let
Gaanlby 1) = % (%’; + m(b)t), (4.40)
we get
(s 1)< (b, ). (4.41)

Defining T, as the solution of
v T, v
P10 = (723) J; b (%I;_+ m(b)T) dr, (4.42)

we find by comparison with eqn (4.4) that

ty Ty
f Thax(b, T)d7 = f G max(b, 7) dT, (4.43)
0 0
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where t, is the time at which failure is initiated at b. By (4.41) and (4.43),
=T, (4.44)

Thus if failure is initiated at the outer surface it will be at a time greater than T,. If failure is
initiated elsewhere, no conclusions can be drawn,
T, is computed from (4.42) to be

T, = m:b){[(\/:; (5) 1%y + l)m(b)-}-(ﬁf)yﬂ]mw” bp} @45)
Using eqns (4.30)~(4.32) and (2.21) with r = b, we can rewrite this as
- 1 1-R\""! AQP)*(1- R™)\ M0
T ~p(1-R"Y) ( 2P ) [(1 +W) - 1:" (4.46)

Next consider the condition
Ta <To. (4.47)

If this inequality holds, the following interpretations can be given: (i) Failure will initiate in the
body at some point other than the outer surface. (ii) Failure at the inner surface will precede
failure at the outer surface provided it did not previously start at an interior point. Again the
above qualifications are necessary since, once failure is initiated in a subregion, the field
equations change.

Using (4.29) and (4.46), we can put condition (4.47) in the form

y+1_A2"Pk(1—R"-')]”("”) [ ( ) et ]ll(wrl)
3+Rs[(1+R) —d=RF +2 1+R’ — ) (1-R"") .

(4.48)
These results can be stated as follows:

Theorem 4.1. Consider an incompressible cylindrical pressure vessel undergoing secondary
creep and subject to a constant internal pressure p. Then, if failure is initiated at the outer
surface, it will be at a time greater than T, given by (4.46). If (4.37) is satisfied and damage is
initiated at the inner surface, it will occur before a time T, given by eqn (4.33). In any event,
failure will begin somewhere in the body before time T,. Also, inequality (4.48) being satisfied
guarantees that failure will initiate somewhere other than the outer surface.

As a special case of Theorem 4.1, consider k =0. This implies that v = n ~ 1. This is not
unreasonable since Odqvist in[8] has determined that

0.62n <y <n, (4.49)

and, for most metals,

v=0.7n. (4.50)

Also in[4] examples of metals were given where indeed v =n—1. With this assumption,
condition (4.37) may be written as

(1+RY -A2*(1-R" =0, 4.51)

and condition (4.48) becomes

In
[(1+R) = A2°(1 = R* N 42 [1 - +?"—;]“ '>34R 4.52)
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Note that both (4.51) and (4.52) are independent of pressure. That is, we can predict when
failure will occur at a place other than the outer surface no matter what the internal pressure is.
Also, since the function

f(R)=(1+R)" —A2"(1-R"")

is an increasing function of R, for R =0, we see that (4.51) is automatically satisfied if
AS—, (4.53)

Thus, failure will be initiated at the inner surface or an interior point for ali R satisfying
0 <R <Ry, (4.54)

where R, is the smallest positive root of

(1/n}
0=[(1+R)" =A2"(1 - R™ ) 42 [1 —A +k—f—_,] -3-R 4.55)

For physical situations in which considerable stress redistribution has occurred prior to the
onset of damage, it is natural to use the long-time bounds derived in Section 3 and to assume

that damage is initiated at the outer surface. To this end, we recall the inequality (3.22) which
has the form

Pla"(r, 1) - " (r,®)| <(A, + At) e, (4.56)
where

A, =0(0) = l(0)] + R™™*|iv - v](0), (4.57)

Ay = CR™"itv = v](0), v = rlo™". (4.58)

Applying (3.23) to the left side of (4.56), we get
Plo*(r, 1) a"(r,®)| S%:— (éblq’)—) (A +Ajt)e . (4.59)
Here we have also used the fact that

a(r,t)?g;—. (agrs<sb,t>0

Thus, for r = b, (4.59) implies the inequalities

o’(b,®)~(Li+Lat)e ™ <0”(b,1)=¢"(b,0)+(L+ Lat) e, (4.60)

where
Li=Z(BPY b/ VA (i=1,2). (4.61)
By (4.4) and the fact that

3
omntb, = an(b, )= (75) otb.1) 462
(see 4.15, 4.17), it follows that the initial damage time, t,, satisfies

A= f " (b, 1) dt, (4.63)
[
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where
A = 1050y (3/2-3-)(3—“". (4.64)
Define T, T> as the solutions of the equations
A= Lrj [o*(b,®)+(—1)(L;+ Lyt)e™'1dt  (j=1,2). (4.65)

Then, by virtue of (4.60) and (4.63), we have
s, <T,, (4.66)

provided that damage is initiated in the body at r = b. After integration, (4.65) becomes
1yttt
A = g*(b,®)T; +(—-C-,—1! [(L. +%)(e' i—1)+TL, e‘”i]. 4.67)

Since all of the constants in (4.67) are known a priori, T; may be computed from it by a simple
iteration scheme. This equation also vields bounds on T;. In fact, since the L; are positive, (4.67)
implies

Ti<o~ A+ L o, )
T,=0*(b, ao)[A —Q‘—'%%i’)] =T. (4.69)

A measure of the relative error involved in the use of Ty and Ty is given by

Ty~T.__2AL,C+Ly
T AC*-L,C-Ly

(4.70)

These results can be summarized by

Theorem 4.2. Consider a symmetric pressire vessel with constant internal pressure p. Then,
assuming failure is initiated at the outer surface, an upper bound on the time until brittle creep
rupture is given by Ty (4.68), a lower bound is given by Ty (4.69), and the relative error between
them is given by (4.70).

Since these estimates were made using the long time estimates on effective stress, their
accuracy is improved if conditions favor a quick redistribution of stress, i.e. high pressure, high
temperature, a high creep constant, and a relatively thin vessel. Tables 4-6 give values of T,
and Ty from eqns (4.68) and (4.69) for various values of pressure and thickness. For (b/a)=1.1
accuracy of the estimates is excellent, while for (bfa) = 2.0 accuracy was best for the low alloy
steel and poor for stainless steel. Also for the stainless steel, accuracy was unexpectedly
reduced as temperature increased. This is due to the fact that the creep rupture constant, o3,
decreases rapidly with increasing temperature.

In[3]}, Kachanov defines Tj, the time of latent failure, as the time of initiation of damage for
the whole body which he computes using the steady state solution at r=5. Thus, in the
notation of (4.63),

T,
A =Jo ‘o *(b, ) dt = Tyo" (b, =),
s0 that by (4.68) and (4.69),

Ti= Ao~ (b,2) =5 (Ty + T,).



58

Paul G. REICHEL and WARREN S. EDELSTEIN

Table 4. Values of T, and Ty for an incompressible cylinder pressure = 5 kg/mm’

3 B B
'a‘=1-l -a-=1-5 §=2.0
T iy o
UL UL vty
Tem T T T T T T,
Material °Cp n » L U IL L u L L U TL
Lowalloy 550 4.15 3 1634 1634.6 .0003 155617 160705 .033 3.1%10° 1.65% 10° 4.36
Sreeled) 600 2.74 2 399 399.4 .0016 9040 9200 .08 3l49h 35193 .17
650 2.1 1.5 370.5 370.9 .0010 4085 4106 . 005 11362 11528 015
Carbon 450 5 3.5 148 148.5 .006 0 6951  ~ 0 4.9%x107 -
Sretleq) 500 3.3 2.3 286 288 .007 8950 11058 .24 0 1.08%10° -
550 2.5 1 5352 5353 .0002 25803 25964 .0062 48574 51552 . 061
Stainless 500 5.6 3.9 3008 3012 .00l4 1.6x 10° 1.97x10°11.4 o 3.5x10° -
Sretleq) 600 4.5 3.1 626 628 .002 52225 86465 .66 o 9.2x1® -
650 4,0 2.8 245 249 .015 0 46633 - 0 1.24%x107 -
Values of n and » from Odqvist[4).
Table 5. Values of T, and T, for an incompressible cylinder pressure = 10 kg/mm?
B 1 )
-a-=l.1 g:l.s '§=2.0
T ey ey, s
vl UL UL
Temp T T, T T, T T,
Material °C n L v L v L L v T
Lowalloy 550 4.15 3  204.25 204.32 ,0003 19484 20056 .029 37417 198587 3, 24
retleq) 600 2.74 2 99.6 99.9 .0019 2256 2304 .021 7782 8889 (142
650 2.1 1.5 131  131.2 .0013 1443 1453 .0066 4008  LOBS .019
Carbon 450 5 3.5 13.05 13.11 .0043 89 5093 56 o 3.07x10°
f‘ﬁgﬂed) 500 3.3 2.3 58 58.4 .007 1817 2245 .24 o 2.18x10%
550 2.5 1 2676 2676 .0001 12913 12970 .00Ls 24505 25558 . 043
Stainless 500 5.6 3.9 202 202 .0008 33875 108400 2.2 o 1.3x10° -
?f‘gﬁed) 600 4.5 3.1 73 73.2 L0017 6572 9603 .46 o B.26x10° -
650 4.0 2.8 35.3 35.7 .01l 0 5685 - 0 1l.41x10® -
Values of n and v from Odqvist [4].
Table 6. Values of T, and Ty for an incompressible cylinder pressure = 20 kg/mm’
2e11 .15 2-20
Temp UL UL ﬁ.
Material °C n ¥ L Ty T LTy T O T L
Lg;':elllw 550 4.15 3  25.53 25.54 .0003 2439 2504 .026 6790 23890 2.52
(rolled) 600 2.74 2 24.9 24.97 .002 563 577 .025 1918 2250 .173
650 2.1 1.5 46.3 46.4  .002 510 514 .0087 1413 1449 .026
Carbon 450 5 3.5 1.15 1.158 .003 72.5 386 4.3 0 1.92x10° -
?l’fgﬁe 4y 500 3.3 2.311.8 1.9  .007 369 456 .24 0 4434 -
550 2.5 1 1338 1338 9.1 1072 6461 6481 .003 12.30 12330 03
Stainless 500 5.6 3.9 13.5 13.5  .0005 3229 6301 .95 0 5.5% 10‘2 -
f}‘gﬁed) 600 4.5 3.1 8.52 8.53 .0013 810 1077 .33 0 7.43%10 -
650 4.0 2.8 5.07 5.12 .009 25 707 27 0 1.5%10° -

Values of n and v from Odqvist[4].
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It is also clear that for (L,C + L;)C* small, use of the steady state solution o(r, ) gives a good
estimate for the time of latent failure. This turns out to be the case when b/a = 1.1.

5. CONCLUSIONS

The investigations presented above were undertaken in order to develop the idea, suggested
in[1], that the bounds (1.4) established in that paper might be employed in the derivation of
more refined bounds. In Section 2 of the present paper, this was achieved by using the bounds
of [1] to obtain new bounds which reduce to the exact solution as t —0. Thus, accuracy for
small times is greatly enhanced. The price paid for this is that, after a critical time ¢*, the new
bounds become less accurate than (1.4). However, Tables 1 and 2 reveal that, in various
situations, ¢* can be quite large.

In[2], an argument was presented for the uniform convergence as t - of the transient
secondary creep solution to the formally derived steady-state solution (3.1). Section 3 of the
present paper was devoted to a reworking of the analysis of[2] in order to obtain, in addition to
this convergence result, explicit bounds for the difference between o(r,t) and o(r, ). The
modified analysis also eliminated the need for a Sobolov-type inequality in the derivation of the
pointwise bound. In a situation analogous to that of Section 2, the present bounds become
inferior to (1.4) prior to some other critical time which has also been denoted t*. Table 3
furnishes examples in which ¢* is quite small.

Thus for secondary creep, three distinct types of bounds are available. The short term
bounds of Section 2, the intermediate bounds derived in[2], and the long-term bounds of
Section 3. As is suggested by the accompanying tables, for certain combinations of material,
temperature and thickness, fewer bounds may be required. In the case of primary creep, the
situation is less satisfactory, in that we are presently unable to establish longtime bounds.

Section 4 furnishes one possible application of the stress bounds, namely, to the estimation
of the time and locus of initial damage, according to the damage theory of Kachanov[3]. The
latter has been used, mainly because our stress bounds can be combined with it very readily to
produce damage estimates. Other more complicated damage theories exist, such as that of
Rabotnov[9]t which include the “coupling” effect of damage on the stress distribution. For that
range of circumstances in which this effect is significant our results would not apply. A
theoretical investigation of those circumstances under which Kachanov's predictions furnish a
good approximation of Rabotnov’s is beyond the scope of this paper. About the only practical
justification we can give for use of an “uncoupled” theory is that it does, to some extent, agree
with long-standing engineering practice, as is asserted by Rabotnov himself ([9], p. 344).

Note added in proof. Since this paper was written, the authors have found additional intermediate bounds for secondary creep
(see, ¢.g. [10]).
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